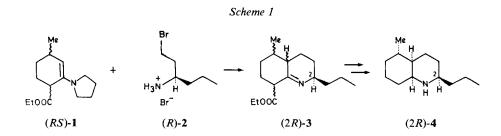
22. An Enantioselective Synthesis and the Absolute Configuration of Natural Pumiliotoxin-C¹)

Preliminary Communication

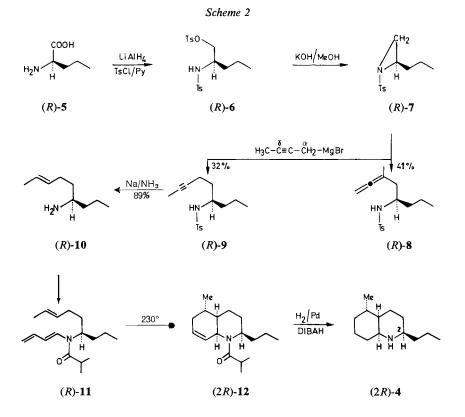
by Wolfgang Oppolzer and Elmar Flaskamp

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4 Dedicated to Professor *R. B. Woodward* on his 60th anniversary

(22. XII. 76)


Summary

(-)-Pumiliotoxin-C-hydrochloride, as well as its unnatural enantiomer, have been synthesized in an enantioselective manner starting from (S)- or (R)-norvaline, respectively. In the crucial cycloaddition step $11 \rightarrow 12$ (cf. scheme 2) the chiral center of 11 controls to a major extent the three developing centers of chirality. This synthesis shows unambigously the (2S)-configuration of natural pumiliotoxin-C.


Pumiliotoxin-C a constituent of the venom of the frogs *Dendrobates pumilio* [1] and *D. auratus* [2] has been assigned structure **4** (*Scheme 1*). X-ray analysis of the hydrochloride [1] and several syntheses of the racemic alkaloid [3–7] leave no doubt about the relative configuration of the four chiral centers.

The absolute (2R)-configuration of the natural product was first claimed [3a] [5b] to follow from an X-ray analysis; this assignment appeared to be supported recently by the conversion of (-)-(R)-2 to (-)-pumiliotoxin-C [5b] (*Scheme 1*). As will be shown below, this point needed further clarification.

We now wish to present an enantioselective synthesis of natural pumiliotoxin-C which unequivocally determines its absolute configuration. This approach (*Scheme 2*)

 Presented by one of us (W.O.) at the Eidgenössische Technische Hochschule Zürich, November 5, 1976.

relies on the stereocontrolled induction of three chiral centers during the intramolecular cycloaddition (RS)-11 \rightarrow (RS)-12 used as the key step for the preparation of racemic 4 [3]. Accordingly the same reaction sequence should lead selectively to the (2R)-pumiliotoxin-C starting from the (R)-amine 10. The latter compound was obtained from (R)-norvaline 5²) in the following way (Scheme 2): Reduction of (R)-5 with LiAlH₄ followed by treatment of the crude amino alcohol with toluenesulfonyl chloride/pyridine furnished the bistoluenesulfonyl derivative (R)-6³), which with KOH in methanol was converted to the N-toluenesulfonyl aziridine (R)-7³) (68% yield from (R)-5). Electrophilic attack of (R)-7 upon the Grignard reagent, prepared from 1-bromo-2-butyne ocurred both in the γ - as well as in the α -position affording a mixture of the allene (R)-8³) and the desired acetylene (R)-9³)⁴) m. p. 78-80°. The latter, separated from the allene by simple crystallization, was transformed into the *trans*-(R)-amine 10³)⁴) (10 · HCl: m. p. 179-186°, 89%) with Na/NH₃, this reaction achieving concomitant reduction of the acetylene- and cleavage of the N-tosyl bond. The absolute configuration of (R)-10 is in agreement with an indepen-

²) Both, (*R*)- and (*S*)-norvaline are commercially available (*Fluka AG*); their absolute configuration has been assigned by correlation with aspartic acid [8].

³⁾ The IR.- and ¹H-NMR. spectra of this compound are in agreement with the assigned structure.

⁴⁾ For the specific rotation of this compound see Table 1.

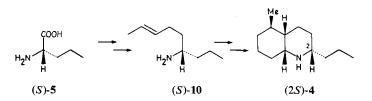
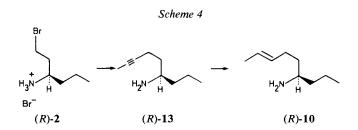

Origin	Solvent	$[\alpha]^{20}_{\mathrm{D}}$	$[\alpha]^{20}_{436nm}$
Natural (D. auratus)	МеОН	-13.1°	-25.5°
from (R)-10	MeOH	$+16.4^{\circ}$	$+28.1^{\circ}$
from (S)-10	MeOH	-14.5°	-27.6°
from (<i>R</i>)-5	CHCl ₃	-12.7°	-25.3°
from (S)-5	CHCl₃	$+12.2^{\circ}$	+ 25.3°
from (<i>R</i>)-9	CHCl ₃	10.5°	-20.5°
from (R)-2	CHCl ₃	-10.6°	-21.0°
from (S)-9	CHCl ₃	+ 9.9°	$+20.5^{\circ}$
	Natural (<i>D. auratus</i>) from (<i>R</i>)-10 from (<i>S</i>)-10 from (<i>R</i>)-5 from (<i>S</i>)-5 from (<i>R</i>)-9 from (<i>R</i>)-2	Natural (D. auratus) MeOH from (R)-10 MeOH from (S)-10 MeOH from (S)-5 CHCl ₃ from (S)-5 CHCl ₃ from (R)-9 CHCl ₃ from (R)-2 CHCl ₃	Natural (D. auratus) MeOH -13.1° from (R)-10 MeOH $+16.4^{\circ}$ from (S)-10 MeOH -14.5° from (R)-5 CHCl ₃ -12.7° from (S)-5 CHCl ₃ $+12.2^{\circ}$ from (R)-9 CHCl ₃ -10.5° from (R)-2 CHCl ₃ -10.6°

Table. Enantiomers of 4, 9 and 10: Specific Rotations ($\pm 0.3^\circ$, c=1 g/100 ml)

dent elegant correlation, carried out by *Helmchen* using ¹H-NMR. spectroscopy [9] and high pressure liquid chromatography (HPLC.) [10] of the amide prepared from (+)-(S)-2-phenylpropionic acid. The HPLC. method showed the (R)-4 to be 97% enantiomerically pure. Condensation of (R)-10 with crotonaldehyde, treatment of the resulting crude imine with NaH (2 equ.) in dimethoxyethane at -30° , followed by addition of isobutyryl chloride and aqueous work-up afforded the dienamide (R)-11 $(57-87\%)^3$ [3]. Thermolysis of (R)-11 at 230° for 16h in toluene in the presence of 2% of bis(trimethylsilyl)-acetamide⁵) using a sealed Pyrex tube furnished (2R)-12 together with minor amounts of diastereoisomeric adducts (60%). Successive catalytic hydrogenation (H_2/Pd , methanol) of the mixture, reductive cleavage of the amide bond with dissobutylaluminium hydride [11] and addition of methanolic HCl-solution furnished the crystalline (2-propanol/hexane) (+)-(2 R)-pumiliotoxin-C (4) hydrochloride³)⁴). Its m.p. (sealed capillary): $286-288^{\circ}$ was depressed by about 40° on admixture of (+)-(2R)-4·HCl with the hydrochloride of natural 4. The two samples exhibit the same spectral and chromatographic properties but an *opposite optical rotation*⁴). thus indicating (2R)-4 to be the antipode of the natural alkaloid. In fact, the analogous reaction sequence⁶) starting from (S)-5 (Scheme 3) furnished pure (2S)-4·HCl, m.p. $288-290^\circ$, identical with the natural 4 HCl as shown by chiroptic⁴), spectral, chromatographic, and mixed m.p. evidence. It thus follows that natural pumiliotoxin-C exhibits the (2S)-configuration.

Since this result is inconsistent with the published conversion of (-)-(R)-2 to natural 4 (*Scheme 1*) [5], it was decided to verify the previous stereochemical assign-


Scheme 3

⁵⁾ Under similar conditions but in absence of the silylating agent variable amounts of N-(non-7en-4-yl) isobutyramide were obtained; see [3].

⁶⁾ The chirality and optical purity (97%) of (S)-10 was examined in the same way as mentioned for (R)-10.

ment of (-)-2⁷). Accordingly, this bromoamine was treated with propynyl sodium in NH₃ to give the acetylene (*R*)-13³) (b.p. 86–87°/12 Torr, 79%) which on reduction with Na/NH₃ furnished the pure (*R*)-amine 10³)⁴) (89%), (*Scheme 4*).

The correlation (-)-2 \rightarrow (R)-10 which also provides an alternative enantioselective approach to the amine 10 thus proves the *R*-configuration of (-)-2 as assigned earlier [5]. After completion, presentation¹) and communication of this work to *G*. Habermehl and *B*. Witkop we were pleased to learn that in fact it was not the (-)-(R)-amine 2 hydrobromide but its antipode which gave the natural alkaloid 4 by way of (2S)-3⁸). With regard to the previously cited X-ray analysis [3a] [5b] we even more recently received notice that this analysis carried out by *I*. L. Karle also has independently proven the (2S)-configuration of pumiliotoxin-C, isolated from *D*. pumilio⁹)¹⁰).

We are indebted to Prof. G. Habermehl and to Dr. B. Witkop for kindly providing us samples of natural pumiliotoxin-C hydrochloride and for valuable information prior to publication. We also thank Dr. G. Helmchen for determining the absolute configuration and the enantiomeric purity of (R)-10 and (S)-10. Generous financial support of this work by the Fonds National Suisse de la Recherche Scientifique, by Sandoz Ltd., Basel, and by Givaudan SA, Vernier, is gratefully acknowledged.

REFERENCES

- [1] J. W. Daly, T. Tokuyama, G. Habermehl, I. L. Karle & B. Witkop, Liebigs Ann. Chem. 729, 198 (1969).
- [2] W. Kissing, Dissertation TH Darmstadt 1972.
- [3] a) W. Oppolzer, W. Fröstl & H. P. Weber, Helv. 58, 593 (1975); b) unpublished results.
- [4] T. Ibuka, Y. Inubushi, I. Saji, K. Tanaka & N. Masaki, Tetrahedron Letters 1975, 323; Chem. Pharm. Bull. (Japan) 23, 2779 (1975).
- [5] a) G. Habermehl & H. Andres, Naturwissenschaften 62, 345 (1975); b) G. Habermehl, H. Andres, K. Miyahara, B. Witkop & J. W. Daly, Liebigs Ann. Chem. 1976, 1577.
- [6] T. Ibuka, Y. Mori & Y. Inubushi, Tetrahedron Letters 1976, 3169.
- [7] W. Oppolzer, C. Fehr & J. Warneke, Helv. 60, 48 (1977).
- [8] P. Karrer & H. Schneider, Helv. 13, 1281 (1930).
- [9] G. Helmchen, Tetrahedron Letters 1974, 1527.
- [10] G. Helmchen, R. Ott & K. Sauber, Tetrahedron Letters 1972, 3873.
- [11] J. Gutzwiller & M. Uskokovič, J. Amer. chem. Soc. 92, 204 (1970); Helv. 56, 1494 (1973).
- ⁷) We wish to thank Dr. *H. Andres* for communicating to us the experimental details concerning the preparation of (-)-(*R*)-2, $[\alpha]_{D}^{20} = -3.4^{\circ}$, m.p. 206° prior to publication.
- 8) Prof. G. Habermehl, TH Darmstadt, private communication.
- 9) Dr. B. Witkop, National Institutes of Health, Bethesda, private communication.
- ¹⁰) In view of this new information, footnote 3 in reference [3] has to be corrected; it appears that during the earlier correspondance with the *National Institutes of Health* an interchange of two published antipodal formulas [1] had occurred by accident.